


Abstract—Computerized  systems  became  everyday 
companions to humans in various application areas. Due to the 
increasing  complexity  of  these  systems  and  wide  variety  of 
problems they help solving the interface between humans and 
machines  becomes  an  ever  critical  issue.  Controlled  natural 
languages might provide a good medium between humans and 
computers, however, they are not easy to design and maintain, 
and humans need time to adopt to them.  Authors propose a 
solution to these problems by using a controlled user interface 
which is powered by an application-oriented natural language. 
The  grammar  rules  and  vocabulary  of  this  language  are 
automatically  generated from a conceptual model of  the user 
interface using so called extended conceptual graphs.

I. INTRODUCTION

O provide an efficient and easy access to computerized 
systems is a complex task for computer science that be-

came everyone’s problem during the past decades. Creating 
interfaces  between  humans  and  information  technology 
devices  (computers,  mobile  phones,  PDAs, even more ad-
vanced multimedia or household equipments) became a cent-
ral problem of software (and hardware) developers.

T

The dawn of the World Wide Web widened the user com-
munity and the simplicity and understandability of user inter-
faces became key requirements. Conventional software sys-
tems (e.g. operating systems, desktop applications) adopted 
Web technologies in many ways to simplify and unify their 
user interfaces. With the dawn of the “Web is the desktop” 
slogan the means of building user interfaces are becoming 
uniform and common [1].

This is not the case with the content and services. Com-
plex  systems tend  to  have  complex  interfaces  (sometimes 
users have to use complex interfaces to perform simple tasks, 
e.g. word processing in Office 2007). The end users' learning 
curve of these interfaces did not drop much enough by utiliz-
ing common techniques for creating them. Menus, buttons, 
forms and other interface elements are needed to provide the 
necessary access to services and information. No matter how 
clever their presentation is – the user has to select the right 
one and has to know where it is and how to use it.


Conventional  user  interfaces  neither  could  handle  well 
changes in the underlying software system well.  Changing 
services, features, internal data types usually means related 
necessary changes in the interface. The adaptation from leg-
acy systems is expensive for the customers and often does 
not yield a better solution for them. It is also of order to no-
tice that users have aversion to changed interfaces.  People 
with less training (or experience) in informatics usually seri-
ously oppose that kind of changes.

The next problem with complex interfaces is that the re-
quired space to display all informative elements might not be 
available (e.g. in mobile phones). This problem is very hard 
to overcome with traditional techniques.

In  this  paper  we propose  an  alternate  way of  building 
complex user interfaces: a method that relies on the express-
iveness and universal understandability of natural languages. 
Although computerized natural  language processing (NLP) 
has its problems and limitations (we will address them in this 
paper) they offer a natural way to cope with the complexity 
of user interfaces. They tackle the complexity at the language 
level and let us to keep computer interfaces relatively simple.

The problem of creating a natural  language  interface  is 
twofold: analytic in understanding the user input (processing, 
understanding the meaning) and synthetic in providing res-
ults to the user (generation). In this paper we focus on natur-
al language processing: understanding the user and providing 
an input interface with good expressive power is a more de-
manding  task.  Using  natural  languages  for  reporting  and 
providing results to the user could not be desirable at all as 
computer visualization techniques might offer a better solu-
tion for this task.

Although this  paper  focuses  on  the task of  natural  lan-
guage-based query interfaces the methods and tools presen-
ted here can be easily extended to other types of interfaces. 
They could be used in language generation for reporting and 
other applications.

The following chapters describe the construction of natur-
al language interfaces in detail: the application and automatic 
generation of application-specific controlled languages and 
two prototype implementations.

Rapid development of 
application-oriented natural language interfaces

Tamás Mészáros
Department of Measurement and Information Systems, 

Budapest University of Technology and Economics, 
Magyar tudósok krt. 2. I.E.437

H-1117 Budapest, Hungary
Email: meszaros@mit.bme.hu

Tadeusz Dobrowiecki
Department of Measurement and Information Systems,

Budapest University of Technology and Economics,
Magyar tudósok krt. 2. I.E.437

H-1117 Budapest, Hungary
Email: dobrowiecki@mit.bme.hu



II. NATURAL LANGUAGE INTERFACES

A. Natural Language Processing
Building complex user interfaces is not a new problem. 

Research in Artificial Intelligence was focused on develop-
ing techniques to understand and to use natural languages in 
computerized systems for a long time. Several methods were 
developed to parse human languages and to understand the 
meaning  of  texts  written  in  natural  languages.  The  task, 
however, is very complex and difficult to solve.

Despite the inevitable interest and serious efforts general 
language  processing  and  understanding  systems  have  not 
reached the level of everyday applicability. The main prob-
lem lies in the spatial and temporal diversity of natural lan-
guages, and the huge amount of necessary contextual know-
ledge to understand them.

B. Controlled natural languages
In order to use present NLP techniques in computerized 

systems some authors suggested “restrictions” to natural lan-
guages. So called controlled natural languages [2] resemble 
to ordinary languages but have a strict (and restricted) set of 
language rules, vocabulary and unambiguous meaning, there-
fore they could be more easily processed by computers. The 
restrictions  allow the  successful  application  of  controlled 
language NLP systems by avoiding the problem of disambig-
uation and uncertain grammar rules, and by explicitly linking 
the language to the contextual knowledge stored in the sys-
tem.

Typical  application  areas  include  information  systems, 
technical documentation, and machine translation. Providing 
database  systems with easily configurable  and  understand-
able graphical interface was a key problem in the 90s and 
some researchers  suggested the usage of natural languages 
for DB access [3]. There are also experimental systems that 
utilize NLP techniques on their  interfaces,  e.g.  the natural 
language bus oracle [4] and for question answering in know-
ledge  bases  [5].  Application  of  controlled  languages  were 
also investigated in the field of machine translation [16].

Unfortunately, there were several problems with the use of 
controlled languages that prevented their widespread applic-
ation.

First, the controlled language is not exactly the same as a 
natural language known by the user – the user has to learn it. 
This could take time, and often there is no time to train the 
user (or there is little interest in the user to learn the restric-
ted rules and vocabulary). The user might “adapt” to the lan-
guage with time, but it is usually required (or desired) that 
the user should be able to use it from the very beginning.

Secondly,  these languages are  not  flexible enough,  they 
could not  adapt  to the changes in the underlying software 
system (e.g. in data structures). These changes usually render 
the controlled language obsolete – it has to be adapted manu-
ally. Such task requires programmers with a unique training, 
and the adaptations are usually not easy to perform.

In the next two chapters we will provide methods to in-
crease the adaptivity in both cases.

III. CONTROLLED LANGUAGE INTERFACES

To circumvent the problem of user adaptivity we propose 
controlled user interfaces to use restricted languages. These 
interfaces do not allow the user to form sentences freely – 
they monitor the user input and automatically adapt it to the 
language. They also provide help for the user on how to use 
the restricted language by suggesting possible language con-
structs, words or expressions.

The simplest way of building a controlled language inter-
face is the predictive text input.

A. Predictive text input
The predictive text input was originally developed for nu-

meric keyboards [6]. During the text input the system ana-
lyzes the user input, corrects errors and provides suggestions. 
In its original form this method is based on a simple diction-
ary – in our case it utilizes the controlled language.

The predictive language input method continuously ana-
lyzes the text the user types in, it determines the set of pos-
sible sentences based on that input, and provides suggestions 
to continue the typing at the cursor position.

With this technology we can attain two goals. The text in-
put is constructed following the language rules and the user 
gets immediate help in using the controlled language. This 
way the user  can use the interface  from the beginning (it 
might be slow for the first time, yet it will be usable), and 
with time the interface language will become more and more 
familiar and easy to use.

This proposed  technique raises some additional  require-
ments for natural language processing. It should support pro-
cessing sentence fragments and the generation of “continu-
ations”  (feature  extensions).  Furthermore,  language  pro-
cessing and generation techniques applied in these systems 
should be efficient: they have to analyze the user input and 
provide suggestions in real time while the user is typing.

Chapter IV will present the details of effective language 
representation and how restricted languages are used in con-
trolled user interfaces.

B. Architecture of a Controlled Language Interfaces
Fig 1 shows the proposed architecture of a controlled nat-

ural  language  interface  that  monitors  the  user  input  and 
provides suggestions based on the controlled language.

Fig 1: Architecture for controlled language interfaces

Parser

User
Interface

Grammar

Proposer



The role of the User Interface is to provide the text input 
method that  continuously monitors  the user  input and dis-
plays suggestions to the user. It sends the actual state of the 
input  to  the  Proposer,  and  makes  use  of  the  suggestions 
computed on this basis.

The task of the Proposer is to analyze the user input and 
provide suggestions. It  parses the input text (sentence frag-
ment), and determines the set of possible language symbols 
that can be added to the input according to the rules of the 
language. The elements of this set are returned to the  User 
Interface as suggestions.

The user continues formulating the query sentence by suc-
cessive typing in and choosing from the available  sugges-
tions.  When  ready,  the  completed  query  is  passed  to  the 
Parser. Its task is to provide a complete analysis of the user 
input.

The  Grammar  component supports both the  Parser  and 
the Proposer by providing an efficient grammar representa-
tion and functions to access it.

The operation of the interface could be divided into two 
phases: generating suggestions based on the monitored user 
input  and  parsing  the  complete  input.  The  first  phase  in-
volves the User Interface,  the Proposer, and the Grammar. 
The user input is continuously analyzed and suggestions are 
generated. When the user sends the complete request to the 
system (second phase), it is analyzed and the complete parse 
tree is sent to the backend to process it and handle the re-
quest (User Interface, Parser, and  Grammar). Both phases 
use the same grammar representation but to different ends.

In the following chapter,  we will closely follow on how 
this grammar is represented and used in the system. We will 
also address the problem of efficient grammar representation 
mentioned earlier.

IV. REPRESENTING AND USING THE CONTROLLED LANGUAGE

A. Grammar representation
In the proposed system the grammar is used in two places: 

for generating suggestions and for parsing user input. The se-
lected  grammar  representation  shall  support  both  applica-
tions. The representation shall also be efficient when creating 
suggestions as this is required by the real-time nature of the 
user interface. In order to fulfill these requirements we have 
selected the simplest grammar type:  the context-free gram-
mar (CFG) [7]. From the point of view of our problem this 
grammar has some favorable features: its parsers are effect-
ive and easy to implement, and its expressiveness proved to 
be sufficient in our applications.

We applied some minor restrictions to CFGs in order to 
enhance the effectiveness of the Proposer and to ease the im-
plementation of the first prototype. These restrictions are not 
obligatory.

In order to provide suggestions in the right order alternate 
symbol substitutions should be enumerated from the simplest 
to the most complex order. The simplest substitution is a ter-

minal symbol, more complex is a list of terminal symbols, 
then non-terminals and their lists follow. The reason behind 
this design pattern is that this way the Proposer will generate 
the simplest suggestions first and no suggestion ordering al-
gorithm is needed.

The second restriction was to eliminate recursive grammar 
rules (a symbol may not be substituted by itself or any other 
symbol that can by substituted by the original one). This sim-
plified the implementation of the Grammar component.

Efficient parsers use the  packed forest  representation to 
store the CFG internally [7]. When using this representation 
several parse trees (a parse forest) could be represented us-
ing a single graph.  Its  nodes could represent  symbols and 
also a set of symbols. This “compression” makes possible to 
represent  exponential  number of parse trees in polynomial 
space and time – an important feature when the aim is an ef-
ficient parser.

Generating suggestions is also an exponentially complex 
task, therefore we can use the same “packing” technique for 
efficient  generation.  The  task  of  the  Proposer can be  de-
scribed therefore as follows. First it finds parse trees (subset 
of the parse forest) that match the current input (i.e. sentence 
fragment). Secondly it attempts to extend the fragment to a 
complete sentence following the selected rules (trees). Dur-
ing this step a list of symbols (possible extensions) is gener-
ated. After removing duplicates and proper ordering the ele-
ments of this list are returned as suggestions.

In order to implement the Proposer we used a graph simil-
ar  to  the  packed  forest  grammar  representation  called 
ordered packed forest (OPF). It uses the same compression 
technique: it integrates parse trees into a common graph, but 
performs this differently.  This graph is a directed bipartite 
graph which has two node types: symbols and symbol lists. 
Edges from symbol nodes to symbol list nodes describe sym-
bol  substitutions,  and  edges  from  symbol  list  to  symbol 
nodes describe containments.

Edges starting at symbol nodes are XOR logically related: 
a parse tree can not contain more than one of them. This is 
the place where multiple parse trees are joined into the parse 
forest (compression). Edges pointing from symbol list nodes 
to symbol nodes are AND logically related:  they are  both 
needed in a parse tree to represent the grammar rule.

All edges are ordered and enumerated in same the order as 
the represented substitutions and symbol lists are ordered in 
the grammar. For symbol lists this is necessary to represent 
the grammar. For the list of substitutions this ordering en-
sures that suggestions will be presented in the proper order.

The  selected  grammar  class  (restricted  CFG)  allows to 
represent all symbols in the grammar with exactly one node 
in the OPF graph. This greatly reduces the complexity and 
facilitates the creation of suggestions.

With such grammar representation  the  task of  the  Pro-
poser can  be  described  as  a  graph  traversal  problem:  we 
have to find a symbol node in the OPF graph which the user 
wants to extend, and then the tree should be traversed from 



that node to the nearest terminal symbol nodes that could be 
added to the given point of the input. These terminal symbols 
will be presented as suggestions to the user.

Fig 2 shows as an example a part of an OPF graph. This is 
a part of a grammar used in one of our prototype implement-
ations  described  in  Chapter  VII.  Section  A.  It  shows the 
rules for noun adjectives (VJ). Nonterminal symbols are rep-
resented  with  empty  circles;  terminal  symbols  are  black 
circles; symbol lists are empty squares. All of three non-ter-
minals (VJ, VJ1 and VJ2) have multiple possible substitu-
tions (multiple XOR edges originated in the non-terminals). 
The related grammar rule prescribes substitutions from the 
simplest to the most complex order, as the edges originated 
from the nodes are ordered from left to right. All the substi-
tution orderings of the grammar rule are retained in the graph 
representation by the suitable ordering of the edges.

B. Large, dynamic vocabularies
The  previously  described  grammar  represents  the  com-

plete language in a single structure. This is not always desir-
able or even possible. There are cases where the complete 
vocabulary is too large or could not be enumerated in ad-
vance (e.g. it is changing dynamically, it contains too large 
number of terminal  symbols,  etc.).  In  such cases grammar 
representation would be too large and it would considerably 
slow down the operation.

The representation tackles this problem with the introduc-
tion of a special node: a terminal symbol with a generation 
rule, called Expandable Terminal Node. Such nodes do not 
contain a terminal symbol, instead they are equipped with a 
rule how to generate  symbols.  (Strictly speaking this node 
type is a non-terminal symbol that could be replaced by a 
single terminal symbol. These non-terminals are not covered 
by the grammar itself, the generation rule could be any al-
gorithm that returns terminal symbols.)

Whenever the suggestion generator reaches an expandable 
node it  executes the expansion rule to generate  the list of 
possible  terminal  symbols.  During the  parsing  these  rules 
provide a test method to check whether a symbol found in 
the input matches a  terminal  symbol  generated  by the ex-
pandable node.

An example of usage could be a list of language names 
covered by a general LANG terminal symbol. The genera-
tion rule could be e.g. a database query that returns the actual 
list of languages or tests an input for a language name.

C. Generating suggestions with the OPF grammar
The task is to provide terminal symbol suggestions to the 

user. In general, this is possible at any point of the user in-
put,  but  for  the purpose  of  this paper  we focus on listing 
symbols that could follow the actual sentence fragments (ex-
tending the sentence at the end).

Enumerating the possible continuations consists of parsing 
and generation steps. Parsing determines the set of possible 
parse (sub)trees. Then a list of terminal symbols that are al-
lowed after the last symbol of the input sentence are gener-
ated by the selected parse trees. In the selected grammar rep-
resentation  these  steps  are  performed  in  a  closely related 
manner using the same data structures.  We have chosen a 
bottom-up parser algorithm to perform the parsing step, and 
a top-down generation algorithm to produce the suggestions.

The detailed description of the Proposer's algorithm is out 
of the scope of this paper – only a short overview is presen-
ted here.

Step 1: the algorithm starts with  identifying the terminal 
symbols  already written by the user.  This  could be  easily 
performed by a simple search in the array of the terminal 
symbol nodes. (Remember: each symbol is represented only 
once in the graph.)

Step 2: Next those symbol list nodes are found that con-
tain the identified terminal  symbols.  Since the suggestions 
are generated only at the end of the sentence, the algorithm 
considers only symbol lists containing the last terminal sym-
bol.

Step 3: Lastly these lists are analyzed. If one of these lists 
is incomplete at its end then a suggestion is generated that 
will contain the next terminal symbol. If there is a complete 
list then its parent non-terminal symbol is examined in a sim-
ilar way than the found terminal symbols (Step 2).

There is a special case in Step 3 that can be handled separ-
ately to enhance the  Proposer's behavior. If the incomplete 
symbol list contains only terminal symbols the algorithm will 
return all missing terminals at once. It will propose complete 
phrases instead of single symbols thus providing a faster op-
eration and better understandability for the user.

The proposed algorithm requires that the user follows the 
rules of the grammar. In order to assure it the controlled in-
terface will reject any word typed in by the user that is not 
allowed by the Proposer. Fig 2: An example of the ordered packed forest representation



D. Parsing with ordered packed forest grammar
The parser is based on the same bottom-up parsing meth-

od as the generator in its parsing phase.
Parsing starts with identifying the terminal symbol nodes 

then it attempts to traverse the ordered packet forest upwards 
to reach its root, the sentence symbol (S).

During the traversal the algorithm analyzes the edges with 
XOR relation and selects the rightmost edge (symbol substi-
tution) from among the alternatives. These decisions will de-
termine which parse tree is selected from the parse forest.

Ideally the controlled interface ensures that the complete 
parse  tree  can  be  reached.  In  practice,  however,  the  al-
gorithm should cope with incomplete user inputs (S could 
not be reached), and provide detailed error message to the 
user in such cases.

E. Implementing the controlled interface
Considering the proposed architecture (Fig 1),  the com-

plexity of  the components,  and the user  interface  require-
ments,  the controlled interface  could be implemented as a 
standalone or as a client-server application as well.

Problems with standalone applications (installation, main-
tenance, resource requirements) and trends in user interface 
developments mentioned in the introduction suggest  that a 
Web-based implementation should be predefined.

During  the  design  of  a  client-server  Web-based  imple-
mentation the capabilities of Web components and their re-
source limits should be closely considered. 

At client side, modern Web browsers support the execu-
tion of program code of several forms, typically Javascript, 
Java, and Flash programs. Javascript is the most common, it 
is supported (and enabled) by most browsers by default. The 
other two options requires other software to be installed. All 
three common programming techniques allow dynamic data 
transfers between the client and the server.

The resource limitations in browsers suggest that only the 
User Interface  component should be  deployed  there –  the 
other  components  should  be  working  at  server's  side.  By 
choosing Javascript we ensure the greatest possible usability: 
all  modern Web browsers  support  this  programming tech-
nique.

The Javascript  implementation in browsers supports dy-
namic client-server data exchange in the background using 
the AJAX (Asynchronous JavaScript  and XML) technique 
[8]. This – along with the possibility to monitor and intercept 
user  input –  is  sufficient  to implement the  User Interface 
component.

The other components can be implemented at server side 
where the resources and programming capabilities are vast – 
they practically do not limit the implementation.

In  application environments  where  the  described  client-
server implementation is not possible (e.g. systems with no 
networking capabilities) a standalone application can be con-
sidered.

In  certain  environments  it  is  also  possible  to  combine 
these  methods.  For  example,  mobile  devices  with  limited 
(and costly) networking could use a system which deploys 
the  User Interface,  Proposer  and  Grammar  components at 
client side, and the  Parser  along with a copy of the  Gram-
mar  is  present  at  server  side.  It  is  also  possible  that  the 
Grammar at client side is not complete. It contains that part 
of the packed forest (graph) representation which is needed 
at a given time of the operation, and other parts are loaded 
dynamically as  needed.  This hybrid  operation could avoid 
the installation and maintenance problems of  a  standalone 
applications  and  could  work also  with limited  networking 
capabilities.

It is common for all implementation methods that the ap-
plication-specific controlled language is separated from the 
interface program, thus the interface implementation is ap-
plication-independent. This makes possible to create a uni-
form interface (or a handful set of interface implementations) 
for all application needs.

V. AUTOMATICALLY CONSTRUCTING THE CONTROLLED LANGUAGE

The previous chapters detailed how a language could be 
represented and used in a controlled interface to provide nat-
ural language text input for the user. The User Interface and 
the Proposer help in learning and following the rules of the 
controlled language.  In  the following, we will address  the 
other  problem of  the  application  of  controlled  languages: 
weak adaptivity and difficult design.

In this chapter we will provide a method to facilitate the 
creation and maintenance of application-specific controlled 
languages. The idea is to automatically generate the language 
from an application-specific conceptual model of the user in-
terface.

This model-based language generation is similar to model-
based  software  development  in  a  sense that  they are  both 
based on a domain model that is used (along with a set of 
pre-made application components) to create the full applica-
tion (the controlled language interface in our case).

A. Requirements for the Model
Our goal is to provide a modeling framework that makes 

the design of controlled natural language user interfaces rel-
atively easy. Programmers without any knowledge of natural 
language processing techniques and tools should be able to 
create and maintain controlled language user interfaces. Lan-
guage grammars  and vocabularies  should be automatically 
generated from the model of the user interface.

Similarly to software modeling frameworks, a visual mod-
eling system is needed, that has predefined, extensible, cus-
tomizable building blocks, and that is capable of combining 
these blocks into an appropriate model of the user interface.

This model should also provide means to describe the re-
lation between the interface  and the application itself,  the 
bridge  to data  sources  (database,  XML,  software services, 
etc.) and to the services of the application.



It might be also desirable that the selected modeling tech-
nique could describe the interface (and the application con-
cepts) in more detail making it possible to use artificial intel-
ligence reasoning and traditional natural language processing 
techniques based on the model. This requirement is currently 
out of the scope of our research but it might provide addi-
tional benefits for future applications.

B. Domain modeling Using Extended Conceptual Graphs
After having analyzed the above requirements we selected 

the Conceptual Graph (CG) modeling technique [9]. It  is a 
very flexible tool to define concepts and their relations. On 
one hand it  allows the creation of loosely defined concept 
models, on the other hand it also makes it possible to con-
struct detailed models that can support  logic-based reason-
ing. It has an easy-to-understand visual representation, and it 
has some nice graphical editors [10].

CGs  have  been  already  applied  in  similar  applications 
[11],  and  they  were  also  proposed  as  a  natural  language 
grammar representation called Conceptual Graph Grammar 
[12]. The CG model representation is also an ISO standard 
[13].

CGs are capable of representing the interface concepts and 
relations in an easy to understand way but they lack some 
features that are required to generate the desired controlled 
language interfaces. Therefore, we have extended this mod-
eling system with methods to describe two other levels of the 
same model: the data and the language. These modifications 
do not change the basic behavior of the CGs but extend the 
applicability of the model.

The new data level introduces bindings to the application. 
At this level concepts (and concept types) defined in the CG 
model could specify relations to the data sources in the ap-
plication. These application bindings make it possible to dy-
namically create  concept  instances during the operation of 
the NL interface.

The language level adds special attributes to concepts and 
relations. The CG model is language-independent. Concepts 
and relations could be named using any notation and in any 
language. Our language extensions introduce language-spe-
cific constructs and symbols. They specify how a given rela-
tion or concept is represented in a given language. Language 
attributes  of  relations  identify  grammar  constructs,  while 
concept attributes define symbols in the context of languages 
and relations.

In order to store these extensions in the model we applied 
the  GraphML  standard  [14]  to  describe  the  conceptual 
graphs.  Although  the  CGs  possess  several  representations 
(OpenCG,  CGIF)  these  formats  do  not  allow such  exten-
sions. GraphML is a standard way of representing graphs in 
a text file. It supports extensions and several graphical edit-
ors support this format.

Fig 3 shows an example conceptual graph of a genome ap-
plication. The code fragment in Fig 4 shows a part of the ex-
tended CG of this model represented in GraphML.

C. Generating the Controlled Language grammar
From the model we can generate the controlled language 

in two steps: first relations (and concepts) form the basis of 
the  language,  the  grammar,  then  the  vocabulary could  be 
constructed from concepts and their data bindings.

In order to create grammar constructs all relations of the 
model are enumerated. Grammar rules are formed from the 
language  attributes  of  the  relations  and  the  attached  con-
cepts. As it was mentioned in the introduction we are focus-
ing on the task of query interfaces in this paper. This means 
that  these  language  attributes  define query structures.  E.g. 
from the “is_part_of” relation the algorithm generates lan-

Fig 3: concepts and relations of a gene database interface (excerpt)

<?xml version="1.0" encoding="UTF-8"?>
<graphml ... >

<!-- graph definition -->
<graph id="GeneGraph01" edgedefault="directed">

<desc>Extended conceptual graph for genome 
db</desc>

<node id="101">
<desc>SNIP: x</desc>
<data key="type">concept</data>
<data key="cname">SNP</data>
<data key="instance">...</data>

</node>
<node id="102">

<desc>relation between SNIPs</desc>
<data key="type">relation</data>
<data key="cname">is_related_to</data>
<data key="lang_rule">...</data>

</node>
<node id="103">

<desc>SNIP: y</desc>
<data key="type">concept</data>
<data key="cname">SNP</data>
<data key="instance">...</data>

</node>
<edge source="101" target="102"></edge>
<edge source="102" target="103"></edge>
...

</graph>
</graphml>

Fig 4: GraphML representation of a conceptual graph (excerpt)



guage rules for describing a query for the part-of relation: 
“which SNP is part  of an SNP set  ...”.  In  addition to  the 
query structures it also generates language rules for filtering 
structures e.g. “... an SNP which is part of an SNP set ...”.

D. Generating the Controlled Language vocabulary
The  second  step  is  to  generate  language  symbols  from 

concepts and relations. Concept and relation symbols from 
their language attributes are added to the language.

Concept instances (generated using concept data bindings) 
could also be added to the vocabulary. There is, however, no 
need to generate the complete vocabulary as it is mentioned 
in Section IV. B. The operation of the controlled language 
interface makes possible to store the instantiation rules (data 
bindings) in the grammar thus significantly reducing the size 
of  the  grammar.  This  way  only  application  bindings  are 
transferred from the conceptual  model to the grammar (as 
special, expandable terminal symbols). These bindings will 
be activated (and transformed into real symbols) only when 
needed during the operation of the grammar.

VI. SUMMARIZING THE INTERFACE DEVELOPMENT WORKFLOW

We can summarize the development of  the application-
oriented controlled language interface in the following steps

Step 1. User Interface Requirement Analysis
Analyzing necessary user interface functions (e.g. possible 

query and report structures) based on user and usage model-
ing. The goal is to identify concepts and their relations.

Step 2. Concept Modeling
Creating types  and  concepts  based  on  the  analysis,  de-

termining bindings between concepts and the application.

Step 3. Relationship Modeling
Specifying  relationships  between  concepts  that  may be 

used (queried) in the interface.

Step 4. Creating the Conceptual Graph Model
Representing types,  concepts,  relations,  and  bindings to 

the application in a conceptual graph model.

Step 5. Language Extensions to the Model
Selecting interface languages (locales), assigning language 

structures to relations, extending concepts with words from 
the selected locales, customizing words according to the re-
lations.

Step 6. Grammar Generation
Automatically  generating  the  controlled  language  gram-

mar from the model.

Step 7. User Interface Assembly
Selecting the appropriate  interface  implementation tech-

nique, and specifying (loading) the generated grammar.

Step 8. Validation
Testing and validation of the interface functions.

VII. PROTOTYPE IMPLEMENTATIONS

Two prototype applications were designed to evaluate 
our ideas in real-world scenarios. The first prototype was a 
Web-based  query  interface  to  the  database  of  Hungarian 
nouns and their attributes. The second prototype was created 
to handle complex queries on a genome database.

A. Controlled Natural Language Interface to a Database
The Hungarian Noun Database [15] contains data about 

more than 30 000 nouns. For each noun it describes approx-
imately 30 arguments and their relations. Typically users are 
looking for nouns with a certain set of arguments and with 
some specific relations. The traditional user interface to this 
database was a Web application. Noun arguments could be 
selected and relations could be described using a rather com-
plex Web form (Fig 5). It contained a check box for all 30 
arguments  (only four  are  shown on  the  figure)  and  other 
fields for their relations. In some cases this form had to be 
used several times in a sequence to form the final query. In 
practice, users had difficulties handling the form in a single 
step, and more complex queries were out of their reach.

We replaced the traditional query interface with a simple 
text input (Fig 6) that used predictive text input and a con-
trolled language to help the users in forming their queries. 

Fig 5: Small part of the old Web form for the Hungarian Noun Database 
translated into English

Fig 6: Part of the new Web interface for the Hungarian Noun Database 
translated into English



The language was built by hand and it contained 10 rules and 
less than a hundred symbols.

We extended the original  Web-based application with a 
client-side Javascript program using AJAX [8] for predictive 
text input and with a server-side code using our previously 
described parsing and generation algorithms to serve the cli-
ent program with suggestions and to parser and translate the 
query into SQL.

The users found the new interface much easier to use, and 
they quickly understood how to form complex queries. They 
found the predictive text input technique hard to use for the 
first time, but they quickly adopted to it. Their main concern 
was that the query language was too strict and it did not al-
low certain query structures.

B. Natural Language Interface to a Genome Database
Our second prototype application is built for a rather com-

plex database of medical data. In this database several tables 
contain information about genome and symptom profiles of 
patients. These tables are heavily inter-linked. The main ap-
plication problem is that even expert users find very hard to 
form the proper SQL query structures to perform a search for 
a given class of patients, genome data, etc. The current inter-
face contains predefined queries created by the developers of 
the application. These queries can be parametrized but the 
users are not allowed to change their structures or to form 
new kind of queries. Fig 3 in Chapter V. Section B. showed 
some concepts and their relations found in the database.

In order to allow regular users to form queries we applied 
our controlled natural language interface. First, the concepts 
and  relations  were modeled  using techniques  presented  in 
this paper.  Secondly,  we generated the language rules and 
vocabulary from the model. This language was loaded into 
the Web system developed for our first prototype for testing, 
and we also implemented a standalone application in Java 
that used the same grammar and vocabulary.

Currently we are in the phase of testing the generated lan-
guage and the Web and Java systems using real data and the 
previously defined queries.

C. CONCLUSION AND FURTHER WORK

We proposed  an  approach  to  effectively use  controlled 
natural  languages  on  human-machine  interfaces  to  query 
databases and software applications. The approach is based 
on two ideas: a controlled text input method and an automat-
ically generated application-specific controlled language.

We developed a grammar representation that can be ef-
fective used for generating suggestions on the predictive in-
put interface and for parsing user input. To circumvent the 
problem of authoring and maintaining an appropriate  con-
trolled language for the interface we propose the automatic 
generation of application-specific languages from a concep-
tual model of the application.

The proposed approach and algorithm has two principal 
advantages.  First, it  allows novice users to use the natural 

language interface from the beginning by providing sugges-
tions.  Secondly,  it  facilitates  the automatic  generation  and 
maintenance of the applied controlled language. These ad-
vantages contribute to the successful application of natural 
languages in human-computer interfaces.

Two prototype applications were built. The controlled nat-
ural  language interface  to  a  noun and argument databased 
proved to be very useful and easy to understand for the users. 
Using a natural language interface for the genome database it 
could be possible for the users to build very complex queries 
that were not possible by traditional means.

Our research now focuses on the detailed elaboration of 
the conceptual modeling technique and its extensions in or-
der to allow the automatic generation of more complex con-
trolled languages. We also experiment with the application 
of our ideas in embedded systems (mobile phones, household 
equipments).

REFERENCES

[1] A. Weiss,  WebOS: say goodbye to desktop applications, netWorker, 
Volume 9 ,  Issue 4, pp. 18-26, 2005.

[2] Allen, Jeffrey; Barthle, Kathleen: Introductory overview of Controlled 
Languages.  Society  for  Technical  Communication  meeting  of  the 
Paris, France chapter. 2 April 2004.

[3] I. Androutsopoulos,  Natural language interfaces to databases -- an  
introduction, Journal of Natural Language Engineering, 1995

[4] T.  Amble,  BusTUC: a  natural  language  bus  route  oracle, 
Proceedings  of  the  sixth  conference  on  Applied  natural  language 
processing, Seattle, Washington, pp: 1 – 6, 2000

[5] P.  Clark  et.  al.,  Capturing  and  Answering  Questions  Posed  to  a 
Knowledge-Based  System,  Proceedings  of  the  4th  international 
conference on Knowledge capture,  Whistler,  BC,  Canada,  pp:  63 – 
70, 2007.

[6] S.L. Smith,  C.N.  Goodwin,  Alphabetic  Data Entry  Via the  Touch-
Tone Pad: A Comment, The Mitre Corporation, HUMAN FACTORS, 
13(2) pp 189-190., 1971.

[7] J.  Earley,  An  efficient  context-free  parsing  algorithm, 
Communications of the ACM, Volume 13, Issue 2, pp. 94-102, 1970.

[8] J.J.  Garret,  Ajax:  A  New Approach  to  Web  Application,  Adaptive 
Path,http://www.adaptivepath.com/publications/essays/archives/0003
85.php, 2005. Retrieved on 2008-05-20.

[9] S. Polovina, Conceptual Graphs: An Overview, Software and Issues, 
A nearplanet.com White Paper, Retrieved on 2008-05-20.

[10] CharGer: A Conceptual Graph Editor, 
http://charger.sourceforge.net/, Retrieved on 2008-05-20.

[11] J.F.  Sowa,  Conceptual  Graphs  for  a  Data  Base  Interface, IBM 
Journal of Research and Development 20(4), 336–357, July 1976 

[12] S.B.  Johnson,  Conceptual  Graph Grammar – A Simple  Formalism 
for Sublanguage, Methods Inf Med. 37 (4-5): pp. 345-52. 1998

[13] Information technology — Common Logic  (CL): a framework for a 
family  of  logicbased  languages,  International  Standard,  ISO/IEC 
24707, 2007

[14] GraphML,  http://graphml.graphdrawing.org/,  Retrieved  on 
2008-05-20.

[15] M. Kiss, Főnévi vonzatosság a magyar nyelvben (Noun arguments in  
the  Hungarian  language)”,  Ph.D.  dissertation,  Eötvös  Lóránt 
University, 2005.

[16] E.H.  Nyberg  and  T.  Mitamura,  Controlled  Language  and 
Knowledge-Based  Machine  Translation:  Principles  and  Practice, 
Proceedings  of  the  First  International  Workshop  on  Controlled 
Language Applications (CLAW), pp. 74—83., 1996.

http://graphml.graphdrawing.org/
javascript:AL_get(this, 'jour', 'Methods Inf Med.');
http://www.nearplanet.com/
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php

